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Emily S.C. Ching
Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

J.S. Langer
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030

Hiizu Nakanishi*
Department of Physics, Faculty of Science and Technology, Keio University, Yokohama 223, Japan
(Received 5 June 1995)

We examine the linear stability of steady-state propagating fracture in two one-dimensional
models. Both of these models include a cohesive force at the crack tip; they differ only in that the
dissipative mechanism is a frictional force in the first model and a viscosity in the second. Our
strategy is to compute the linear response of this system to a spatially periodic perturbation. As
expected, we find no dynamical instabilities in these models. However, we do find some interesting
analytic properties of the response coefficient that we expect to be relevant to the analysis of more

realistic two-dimensional models.
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I. INTRODUCTION

Studies of dynamic fracture, including our own work
[1-3], ordinarily have stopped short of systematic sta-
bility analyses. For the most part, the basic ideas in
this field have emerged from Yoffe’s discovery [4] that
the peak stresses near the tip of a running mode-I crack
shift to the side at some critical velocity less than the
Rayleigh speed. This observation, however, has not yet
been converted into a demonstration that a crack actually
becomes dynamically unstable against bending deforma-
tions at that or any other velocity.

There are intrinsic difficulties in carrying out conven-
tional linear-stability analyses in fracture dynamics. In
almost all mathematical models of fracture, the crack
tip is a singularity in some displacement field, and the
motion of the tip is governed nonlocally by the dynam-
ics of that field. Moreover, a running crack is a driven,
nonequilibrium system that must necessarily be exam-
ined in a moving frame of reference. Thus the linear-
stability operator is not only nonlocal but also non-self-
adjoint. In such situations, the eigenvalues of the stabil-
ity operator, if they can be found at all, may not provide
the most useful information and the reasons for this have
been described by Trefethen et al. [5].

In this paper, we present a dynamic-stability analysis
for two versions of a simple, one-dimensional model of a
moving crack. The steady-state properties of this model
have been described in an earlier publication [1]. Our
main motivation for the present investigation has been
to develop mathematical techniques for studying frac-
ture stability. We do not expect there to be any dynamic
instabilities in these models and, indeed, we have discov-
ered none. But we have found some interesting math-
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ematical results that we hope to exploit in our ongoing
studies of fracture stability in higher dimensions.

The model to be considered here is defined by a differ-
ential equation of the form

Uz,t) = U"(z,t) — p? [U(z,t) - A(w)] - f(z)
—$(U (2, 1)). (11)

Here, U(z,t) is the crack opening displacement at po-
sition z and time ¢t along the line of fracture, that is,
along the z axis. Dots and primes denote differentiation
with respect to t and z, respectively. We generally as-
sume that the crack moves in the negative z direction.
By definition, U = 0 along the unbroken region of the =
axis, ¢ < Z4ip(t). Far behind the tip, £ — 400, the fully
relaxed, broken configuration is U(z) ~ A(x).

In the absence of the terms denoted f and ¢ on the
right-hand side, (1.1) is a massive wave equation in which
position and time have been scaled so that the wave
speed is unity. In higher-dimensional models, this wave
speed would be the speed of a Rayleigh wave moving
along the fracture surface. The “mass” u is the inverse
of a length that is roughly analogous to the width of a
strip or the thickness of a plate in higher-dimensional
fracture problems. In our units, p? is the strength of
an elastic coupling between the fracturing material and
a fixed substrate at position A(z). Thus p provides a
long-wavelength or, equivalently, a low-frequency cutoff
for the excitation spectrum of our one-dimensional elas-
tic medium. The quantity u?A(z) is the driving force
for fracture. In the unbroken region where U = 0, the
elastic energy available to drive the crack is u2A?/2 per
unit length.

Our strategy for a linear-stability analysis is to sepa-
rate A(z) into two parts:

A(z) = A +e(z), (1.2)
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where A is the average driving force and &(z) is an in-
finitesimal perturbation. Note that we assume from the
beginning that £(z) is a purely static perturbation. (It
may be interesting in the future to look at the fully time-
dependent problem in order to study the effects, for ex-
ample, of thermal fluctuations or acoustic waves on crack
motion.) So long as we restrict our attention to purely
linear response, we can construct any perturbing force
that we like by superimposing Fourier modes; therefore
we write

e(x) = ém ™. (1.3)
Our goal is to compute the linear response of the crack
to this perturbation. Specifically, we define

—imut

Tyip(t) = —v — O e (1.4)
where v is the steady-state velocity at the unperturbed
driving force A, and —,, e "™ is the first-order re-
sponse to the perturbation in (1.3). The response co-
efficient to be computed is

x(v,m) = Zm . (1.5)

m

The function f(z) in (1.1) is the cohesive force [6].
Ahead of the crack tip, where the crack is fully closed,
f(z) must just cancel the applied force:

T < Ttip

1.6
T > Tiip- ( )

”x

f(z < zyp) = FO)(z) = {6" A(z),
When the crack starts opening at the tip, on the other
hand, f becomes a function of U that, for simplicity, we

take to have the form
J

U - 22,0 + 23, U" — i4pU’ = U" — p? [U ~ Az + ztip)] — f(= + Teip) — 20U + 20U’

We next write

U(z,t) = Up(x) + Ui (x) e ™2, (2.2)

where Up(z) is the zeroth-order, steady-state displace-
ment at uniform driving force A, and U;(z) e~*™*¢ is the
first-order correction due to the perturbation &,,.

In zeroth-order, the equation of motion becomes

BEUY — u*(Uo — A) — 2av U — p?A[1 — 6(z)]

—fe{Uo(2)}0(2) = 0, (2.3)

where 32 = 1 — v? and 6(z) is a step function that van-
ishes for z < 0 and is unity for £ > 0. We can solve this
equation immediately by Fourier transformation. Let
Uo(k) denote the Fourier transform of Up(z). Then the
transform of (2.3) is

1
€+ ik

Fo(k) Ug(k) = [L2A = fo(1 — 7)),  (2.4)
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0<U<$

< U. (1.7)

o> o) = £} = { 1

Here, fo is the yield strength and § is the range of the co-
hesive force. The fracture energy per unit length of crack
is I' = fod. Throughout this analysis, we shall assume
that 4 is a microscopic length, much smaller than any
other length scale in the problem, and therefore, wher-
ever possible, we shall work in the limit 6 — 0, fo — oo
such that I' remains constant. Note that the Griffith
threshold occurs where the fracture energy I' is equal to
the stored elastic energy u2A2/2; thus Ag = v2T'/p.

The final term in (1.1), #(U), is the dissipative force
that is needed in order that there be steady-state solu-
tions above threshold, A > Ag, where the stored elastic
energy exceeds the fracture energy. We shall consider
two different cases, a frictional force with ¢ = 2aU and a
viscous force with ¢ = —nU". Because the friction model
is somewhat simpler mathematically, we shall use it for
setting up the stability analysis in Sec. II, and then shall
describe the more interesting viscosity model in Sec. III.
We end the paper with some concluding remarks in Sec.
Iv.

II. FRICTION MODEL: ¢ = 2aU

The first step in our analysis is to transform the equa-
tion of motion (1.1) into a frame of reference that is mov-
ing in such a way that the tip of the crack is always at
z' = 0. This transformation into a nonuniformly mov-
ing frame is essential because we must deal nonperturba-
tively with the singularity in U(z,t) at © = z4;p(t). We
set € = x’ + x4;p(t) and then, for notational simplicity,
let 2’ — z. The result is

(2.1)

[
where € is an infinitesimally small, positive number;

Fo(k) = B2k? + p? + 2iavk = B2 (k — k) (k — k(7))
(2.5)

and

k& = —%’—2’-’ +i (%;)2 + (%)z

The symbol ! in (2.4) denotes the length of the cohesive
zone, that is, [ is the position where

(2.6)

Uo(l) =6, (2.7)
beyond which the cohesive force drops to zero.

The function Up(z) vanishes for z < 0; accordingly,
Uo(k) must be analytic in the lower half k plane. In
order that there be no pole in Up(k) at k = k()| the
right-hand side of (2.4) must vanish at that point:
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P2A — fo(1 — e~ 7 =0, (2.8)

Equation (2.8) is, in effect, a solvability condition for
(2.4). Then

(e-—ikl _ e—ik(‘)l)eikz

fo [ dk
Uo(z) = G2 / 2 (€ + ik) (k — k(D)) (k — k()

(2.9)

Equation (2.7) becomes

_ _fo [ dk (1 — eilk—k )y
8 =Uo(l) = 32 / 27 (€ + ik)(k — k(D)) (k — k()

~ fo
~ o

(2.10)

To do the integration here, we assume that k()] <« 1
and then pick out the leading term in [ by expanding the
exponential to the order — 2 in this case — that gives
an integrand that goes as k~! at large k. Note that we
can obtain the same result by evaluating Uj (0) directly
from (2.3) and assuming p?A < fo. In this limit, the
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solvability condition (2.8) becomes u?A =~ k() fo. We
may think of these results as being exact in the limit
fo = 00, 6 — 0. For the friction model, the k() are non-
divergent functions of «, v, and y; they do not depend
on fo or §. Thus the solvability condition tells us that we
can make ! arbitrarily small by letting fo become large.

We complete the zeroth-order solution by eliminating
! to find

av _ (A/Ag)’ -1
pB o 2A/Ae)

This implicit formula for the steady-state v as a func-
tion of the driving force A shows that v rises from zero
at A = A¢g and approaches unity as A becomes large.
All of the above zero-order results may be found in Ref.
[1]. In comparison to the techniques used in that pa-
per, however, the Fourier methods used here seem sim-
pler and more nearly analogous to the Wiener-Hopf tech-
niques that are needed in two-dimensional versions of
these problems.
The equation of motion in first order is

(2.11)

—B2UY + 2v(a — imv)U] + (p? — m*v? — 2iamv)U; = —(2a — imw) o, U} — 200, UY — [FL({Uo)Uy — P €] O(2).

In the next-to-last term,

—fe(Uo) = fod(Uo - 6)

__fo
U0

(2.12)

Sz —1) ~ _1_2-5(96 —1), (2.13)

where we have used a small-l approximation, Ug(l) = fol/B?%, analogous to the approximation used for Uy () in (2.10).

The Fourier transform of (2.12) is

A ~ A~ 2Am 2 .
Fy(k,m) Uy (k) = k(2v0k — mv — 2ia) Up(k) Orm + ﬁ:-n—j + %—Ul(l) ekl (2.14)
where
Fy(kym) = k? —v2(k — m)? + p? + 2iav(k — m) = B3(k — KD))(k — K()). (2.15)

In analogy to (2.6), we choose the K(*) to be the roots of ﬁ'l(k, m) whose imaginary parts are, respectively, positive
and negative. (The two roots do lie on opposite sides of the real axis for all real m and v < 1.) Then the complete

expression for U;(z) is

1 dk etk
Do) =5 / 27 (k— K®M)(k — K())

_ (vm + 2ia — 2vk)(e7H e~ ) fob,

Hém B

[ i(k— kD) (k — k)

Solvability requires that the quantity in square brack-
ets in (2.16) vanish at k = K(~) so that the integrand
has no pole in the lower half plane at & = K(-). Use
(2.12) or (2.16) to compute, for small [,

2 ~
UL (1) ~ % (””g;f‘) - %uzém) .

Then the solvability condition becomes a linear relation-

(2.17)

ship between ¥,, and £,, that determines the response
coefficient x (v, m):

em _ ifol

Xa'(v,m) = o W(K(—) —m)
MLCREY (LY JR

The natural scale on which to measure x(v,m) is
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Xa (’U, 0) = 5_27
that is, the response of the system to an infinitely long-
wavelength perturbation.

First, let us examine m dependence of xo(v,m) for
real m. It is useful to start by noting that x.(v,m)
has a specially simple form in the particular case where
of/p=1:

(2.19)

x5 (v,m) = VT %;Tl(l —im/p).

(2.20)
The peak in the response is at m = 0 and its width is pu,
independent of the velocity v.

For a/p = 0.1, that is, for the case of small dissi-
pation, the m dependences of |xq(v,m)/x«(v,0)| and
arg[Xxa (v, m)] are shown in Fig. 1 for three different ve-
locities: v =0.01, 0.2, 0.9. In this limit of small «, the
natural independent variable for Fig. 1 is the Lorentz-
transformed frequency mv/ normalized to the low-
frequency cutoff u. This is just the frequency at which
the nodes of the perturbation are passing the crack tip in
the moving frame. In these units, the response becomes
broader at higher velocities, but the peak always stays at
m = 0, that is, there is no tendency toward a finite-wave-
number instability. The quantity arg[x (v, m)] shown in
Fig. 1(b) is the phase delay of the response, which shows
more interesting structure. For the static perturbation
(m = 0), the phase delay vanishes as it should, but it
increases until the perturbation is resonant with the nat-
ural frequency pu, i.e., vm/B = p, and then decreases to
the limiting value /2. These features are basically those
of a dissipationless system.

For a large value of the dissipation constant, a/yu =
5, the dynamics is controlled primarily by the friction;
thus the natural independent variable is the frequency
mv measured in units of the dissipation rate a. Our
results for this case are shown in Fig. 2 for the same
three values of v that we used in Fig. 1. The phase delay
increases monotonically to the limiting value except for
the case of extremely slow speed v = 0.01, in which there
is a sharp rise at a small value of vm/a that is reminiscent
of the behavior seen previously for small a/yu. We show
this feature in the inset of Fig. 2(b), where the arguments
are plotted for v = 0.01 and o/ = 0.1, 1, and 5.

A second useful way to examine the formula (2.18) for

4417

Xa(v, m) is to look for poles in its analytic continuation
into the complex m plane. These poles, if they exist, cor-
respond to normal modes of the system. Poles at negative
imaginary values of m correspond to stable, exponentially
decaying modes; poles at positive imaginary values of m
would imply instabilities. In the present case, the poles
can be determined exactly. The factor (K(7) — m) in
(2.18) vanishes at m = —iu for all v, and the quantity in
square brackets vanishes at m = —2ia/v except for the
special case a/pu = 1 shown in (2.20) where the residue of
the pole vanishes. We find no other poles, and therefore
conclude that the friction model is entirely stable.

III. VISCOSITY MODEL: ¢ = —nU”

The basic equations for the viscosity model are the
same as for the friction model except that 2« is replaced
by —n 8%/8z2. In the zeroth-order calculation, instead of
(2.5), we have

Fo(k) = B%k* + p® + inuk®

= inv(k — k1) (k — k2)(k — k3), (3.1)
where the k,, n = 1, 2, 3, are the three roots of Fg(k). We
choose these roots so that, at small v, k; = —k; = —ip,
and ks = i/nv. For any v, the root k; is always on the
negative imaginary axis in the k£ plane and the other two
roots on the positive imaginary axis. Then the solvability
condition in zeroth order is precisely the same as (2.8):

p2A = fo(l — e 1Y) x ikylfo. (3.2)

As before, the last expression in (3.2) is exact in the limit
fo = o0, 6§ = 0 and, because k; is always finite, it implies
that we may assume [ to be arbitrarily small.

The complete expression for Up(z) is

o dk (e ikl — g—ikal) gike
Vo) = v / 2mi (e + ik) (k — k1) (k — k2) (k — ks)
(3.3)

In the limit of small [,
Uo(l) = fol®/6nu. (3.4)

We can obtain this result either by evaluating (3.3) or by

B0 (0,0)]

FIG. 1. m dependence of (a) amplitude
and (b) argument of the response function
Xa(v,m) for a/p = 0.1 and (i) v =0.01, (ii)
0.2, and (iii) 0.9.
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computing U("(0) directly from the zeroth-order equation
of motion. The validity of (3.4), however, requires that
knl < 1 for all n, which is true everywhere except at
v — 0, where k3 — oo. That is, the viscous length
k3! vanishes at the Griffith threshold while, for large
but finite fo, the cohesive length ! remains finite. At all
other values of v, we may safely assume that [ is very
much smaller than any other length in the system.

The first-order equations, analogous to (2.14) and
(2.15), are

Fy(k,m)Uy (k) = k (2vk — mv — ink?) Up(k) O
2A
HEm 2ﬂ —ikl
iy TR Ur(l) e™™,

(3.5)

where

Fy(k,m) = k? —v*(k — m)? + u? + inuk?(k — m)

For real m and v < 1, we find that only one of the three
roots of (3.6), say Ki, has a negative imaginary part.
Therefore solvability of the equation for U; requires that
the quantity in square brackets in (3.7) vanish at k = K;.
In the limit of small I, and for v # 0,

UL (1) ~ _B (f "Z’"‘ + ;ﬂém) ) (3.8)

6nv

As before, the solvability condition plus (3.8) becomes a
linear relation between ¥,, and é,, that determines the
response coefficient:

—1 _ém _ ifol Ki—k 1
Xo (vm) =50 = e, Emm) (T - 3) -
(3.9)

The quantities |x,(v,m)/xn(v,0)| and arg[x,(v,m)]
are shown in Fig. 3 as functions of vm/ugB for nu =0.01
and v =0.01, 0.2, 0.9. The main difference between the
friction and viscosity models is that the width of the peak
for large v in the viscosity model is broader than that in
the friction model.

As in the case of the friction model, the factor (K; —m)
in (3.9) vanishes at m = —ipu for all v. The expression
inside the square brackets gives another zero at

(b)+

. FIG. 3. m dependence of (a) amplitude
and (b) argument of the response function
Xn(v,m) for np = 0.01 and (i) v =0.01, (ii)
0.2, and (iii) 0.9.

=inv(k — K1)(k — K2)(k — K3). (3.6)
Then the complete expression for Uy (z) is
1 dk etk
0 = 50 | o RO RO
(2vk — vm — ink?) (el — e~ikil) Foi
no (k — k1)(k — ko) (k —k3) "
2 A
HEm 2nv —ikl
+€+i(k—m) + B Ui(le . (3.7)
St
st
‘5‘: N
>
oW
/2
(i)
(i)
o 1
0
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m* = _4—31— [1 — 402 — 3nolky| + /(1 — 40% — 3nolks|)2 + 1670(1 + 2v2)|k1|] , (3.10)
nv

which is purely imaginary with a negative imaginary part
and is on the branch of solutions for m* for which the
imaginary part of K is negative. This implies that the

system is stable against the perturbation. When 7 is
small:
3i(1 — 4v?
__z(_z_v_), 0.5 —v > il
3i /6
nm* ~ -—23 TZ“}, 0.5 — v| < /1
6i(1 + 2v2) nuv
—_—— — 0.5 NLTTR
(42 —-1) g~ v > \/nu
(3.11)

The imaginary part of m* is plotted in Fig. 4 as a func-
tion of v for various values of nu. The absolute value of
m* decreases significantly when v 2 0.5. This indicates a
weakening in stability and should correspond to the fact
that |x, (v, m)/xy(v,0)| has a broader peak for large v.

IV. CONCLUDING REMARKS

We have carried out a systematic stability analysis of
dynamic fracture in two simple one-dimensional models,
the friction and the viscosity models, each with a dif-
ferent dissipative mechanism. Instead of attempting to
find eigenvalues as in conventional linear-stability analy-
ses, we have developed a different approach by evaluat-
ing the linear response of the crack to a small external

0.0 0.5 1.0
1%

FIG. 4. v dependence of the imaginary part of one of the
poles of x,(v,m) for nu =40, 0.001, 0.01, and 0.1 (from top
to bottom).

perturbation of wave number m. The linear response
coefficient, expressed as a function of m and the crack
speed v, contains all the information pertaining to sta-
bility. The poles of the response coefficient, if they ex-
ist, correspond to normal modes of the system. Poles
at negative imaginary values of m correspond to stable,
exponentially decaying modes whose decay rate is the
product of the velocity v and the magnitude of the imag-
inary part of m. On the other hand, poles at positive
imaginary values of m would indicate instabilities. For
the two models studied, two poles are found for the re-
sponse coefficient, both at negative imaginary values of
m; therefore we conclude that no dynamic instabilities
exist in these one-dimensional models of fracture.

For both models, one of the poles of the response coeffi-
cient is at m = —ip at all velocities v. Thus both models
have a stable decaying mode with a decay rate vu. Be-
cause the length 1/p can be interpreted as the width of
a strip or the thickness of a plate in higher-dimensional
fracture problems, we suggest that this stable mode will
become marginally stable (the pole will approach the real
m axis) as the size of a higher-dimensional system be-
comes large.

For the friction model, the second pole is at m =
—2ia /v corresponding to another stable mode with a de-
cay rate 2a, independent of v. Thus the frictional force
can always stabilize the propagation of fracture in this
one-dimensional model, no matter what the velocity of
propagation might be.

The viscosity model is mathematically more complex.
The second pole is at m* which, again, is on the neg-
ative imaginary m axis. The interesting feature is that
the decay rate of the corresponding stable mode (v|m*|)
now depends on the velocity of fracture propagation as is
shown in Fig. 4. It is larger for small v, decreases as v in-
creases, and slightly increases again as v approaches the
wave speed (unity). This behavior is the same for arbi-
trarily small values of 7, so long as the viscous length
scale v remains much longer than the (microscopic)
length of the cohesive zone £. The initial decrease of
decay rate suggests a weakening in stability as the veloc-
ity of propagation increases, and is more dramatic when
7 is very small [see also (3.11)]. The minimum decay rate
occurs at v in the range 0.5 — 0.8, depending on the value
of i, and its value is smaller for smaller n as expected.

Perhaps the most important general conclusion to be
drawn from the present results is that it is absolutely
essential to include some dissipative mechanism in dy-
namic stability analyses of fracture. Without dissipation,
steady-state solutions exist only precisely at the Griffith
threshold where the stored elastic energy is entirely taken
up by the fracture energy as the crack extends. Thus it
makes no sense to try to study stability by computing
the response to some change in the driving force because
only one special driving force is allowed. This behavior
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emerges clearly in our results. In the friction model, the
pole in x(v,m) at m = —2ia/v would become an un-
physical pole at m = 0 if we let a vanish at nonzero v.
In the viscosity model, once we have taken the limit of a
vanishingly small cohesive zone, our mathematics is well
defined only for nonzero 7, and the corresponding pole
in x,(v,m) at m = m* stays well away from m = 0.
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